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Available online xxxx or ]q, oo[ with g € Qso. It is a Q¢-set endowed with a binary relation > extending the

usual one on R.( (identified with a subset of B via the map r ~ [r, +o00[). We first
prove that there exists a unique map @ : A x A — B such that (for all x, y € A and

g?lgrds, allm, n € N*) we have ®(mx,ny) = mn~' - ®&(x,y) and xRy < ®g(x,y) > 1.Then
Semigroup we give a characterization of the homothetic positive orders R on A such that there exist
Weak order two morphisms of N*-sets uy, u, : A — B satisfying xRy < uq(x) > uy(y). They are
Interval order called generalized homothetic biorders. Moreover, if we impose some natural conditions on
Biorder the sets u;(A) and u;(A), the representation (uq, uy) is “uniquely” determined by R. For a
Intransitive indifference generalized homothetic biorder R on A, the binary relation R; on A defined by xR,y <
I“d?PeT‘dence Dr(x,y) > Pr(y, x) is a generalized homothetic weak order; i.e. there exists a morphism
Positivity of N*-sets u : A — B such that (for all x, y € A) we have xR,y < u(x) > u(y). As we

Archimedean property did in [B. Lemaire, M. Le Menestrel, Homothetic interval orders, Discrete Math. 306 (2006)

1669-1683] for homothetic interval orders, we also write “the” representation (uq, u;) of
R in terms of u and a twisting factor.
© 2008 Elsevier B.V. All rights reserved.

This paper proposes a generalization of [13] in which we had studied homothetic interval orders on a nonempty N*-set
A. Let us recall that such an order R is a nonempty binary relation, h-independent in the sense that xRy < mxRmy for
all x, y € Aand all m € N*, and satisfying a series of properties that ensure the existence of two morphisms of N*-sets
uq, Uy : A — RogsuchthatxRy < uq(x) > uy(y) with u; < u,. Moreover, the pair (uq, uy) is unique up to multiplication

by a positive scalar. Besides h-independence, the most striking properties of homothetic interval orders are:

- asymmetry: xRy = y (—R) x where —R means the negation of R;
- h-positivity: for all m, n € N* such that m > n, we have xRy = mxRny;
— h-super-Archimedean': if xRy, then there exists m € N* such that mxR (m + 1)y.

Note that asymmetry implies
- irreflexivity: x (—R) x.

Of all these properties, this paper first retains only two: h-independence and h-positivity.

* This paper has been announced in [M. Le Menestrel, B. Lemaire, Ratio-scale measurement with intransitivity or incompleteness: The homogeneous
case, Theory Decis. 60 (2006) 207-217; B. Lemaire, M. Le Menestrel, Homothetic interval orders, Discrete Math. 306 (2006) 1669-1683] under the title of
“Homothetic positive orders”.

* Corresponding author.

E-mail addresses: lemaire@iml.univ-mrs.fr (B. Lemaire), marc.lemenestrel@upf.edu (M. Le Menestrel).
T [13], we called this property h-Archimedean but the terminology of the present paper is more in line with the literature (see e.g. [6]).
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Let R (A) be the set of binary relations on A that are h-independent and h-positive. Abandoning the h-super-Archimedean
property naturally leads to enrich the range of the representation: denote by R? the set of intervals of R having the form
[r, +o0[ or ]r, +o0o[ with —o0 < 1 < +00, endowed with the order < inverse of the one given by inclusion. We identify
r € R with the closed interval [r, +00[, and we note r* the open interval ]r, +00[. We denote by oo the empty interval
] 4+ 00, 4+00l. In this manner, the relation < on R’ extends the relation on R, and we denote by > its negation: for two
intervals I, I’ in R", we then have I > I’ & I' ¢ I. We also endow R” with a R.¢-set structure extending the one of R (cf.
Section 1). Finally, we define:

B = R>O U {q+ ‘qE Q>O} U {0+» w}v
A=TR.oU{0", 00}.

We have the inclusions A C B C R? and A and B are respectively a sub-R. o-set and a sub-Q- o-set of R".
Our first result is the following (4.2): for all relation R € R(A), there exists a unique function @ : A x A — B satisfying
(forallx, y € Aand allm, n € N*):

(1) @r(mx, ny) = T - Pr(X,¥);
(2) XRy & dr(x,y) > 1.

Conversely, any binary relation R on A such that there exists a function @ : A x A — B satisfying (1) and (2) belongs to
R(A).

Denote by R’ (A) the subset of R (A) consisting of h-super-Archimedean relations. We verify that for R € R(A), we have
R € R'(A) if and only if ®g(A x A) C A.

We then introduce a notion that extends homothetic interval orders: a relation R € R(A) is said to be a generalized
homothetic biorder if there exist two morphisms of N*-setsuq, u; : A — Rio suchthatxRy < uq(x) > uy(y); in which case
we say that the pair (uy, uy) represents R. We show thatif R € R(A) is a generalized homothetic biorder, then the pair (uq, u;)
which represents R is unique up to multiplication by a positive scalar (6.5). In fact, the correct formulation of this uniqueness
property is slightly more complicated (cf. Section 6), and leads us to distinguish three cases: ®(A x A) C {07, ocol;
DRr(A x A) C A~ {07, 00}; and @R(A x A) C B ~ A. In particular, if R is a h-super-Archimedean generalized homothetic
biorder on A such that ®z(A x A) ¢ {01, oo}, then there exists a “unique” representation (uq, u;) of R in A, i.e. such that
ui(A) CA(i=1, 2).

Before going on, let us consider the three following properties for a binary relation R on A:

- Ferrers: xRy and zRt = xRt or zRy;
- negative transitivity: X (—R) y (—R) z = x (—R) z.

Recall that R is called:

- a biorder if it is Ferrers;
- an interval order if is irreflexive and Ferrers;
- aweak order if is asymmetric and negatively transitive.

So we have the implications:
weak order = interval order = biorder.
Usually, a biorder R on A is said to be representable if there exist two functions uq, u, : A — R.g such that
XRy < ui(x) > uy(y).

Note that if u; < u, (resp. u; = uy), then Ris an interval order (resp. a weak order).

Thus homothetic interval orders are particular cases of representable interval order. And the notion of generalized
homothetic biorder is a twofold extension: firstly we enlarge the space of the representation, in the sense that the two
functions u; and u, on A may take their values in Rio instead of R.(; secondly we remove the condition u; < u,. A
generalized homothetic biorder represented by a pair (uq, uy) such that u; < u; (resp. uy = uy) is called a generalized
homothetic interval order (resp. a generalized homothetic weak order).

Let us return to the contents of the paper. We then study the characterization of the subset R,(A) C R(A) of generalized
homothetic biorders. Note that in [12], we have studied the case where A is homogeneous (i.e. such that for all x, y € A,
there exist m, n € N* such that mx = ny). In that special case, it is easy to show that any positive homothetic order is also
a homothetic biorder, i.e. we have R,(A) = R(A). But this equality is no longer true in general. In Section 9, we identify
a (finite!) set of properties that characterize R, (A). These properties are in fact compatibility properties between R and its
dual relation RY € R(A), defined by

xRy & y(—R)x.
We show that if R € R,(A), then the binary relation R, on A given by
XR1y & Or(x,y) > PRy, X)
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is a generalized homothetic weak order (11.1). This allows us to extend the representation of a homothetic interval order
introduced in [11,13] to generalized homothetic biorders (11.3): for R € R,(A), there exists a morphism of N*-sets

u:A— Rio and amap y : A/N* — A, such that (cf. the writing conventions in Section 11)

XRy & y(®) -u@x) & y@) - i)
with

- Ju@y) ifuy)eA
uy) = {r ifuy) =r*.

Moreover, if we ask the pair (u, y) to satisfy some natural conditions, then it is unique up to replacing it by (A - u, y) for a
A € Roy.

Let us conclude this introduction with some remarks about the nature of our results, and their link with the literature
on the topic. Our algebraic study of homothetic orders began with homothetic semiorders on homogeneous sets in [11]
and was later generalized to homothetic interval orders and homothetic semiorders on general sets in [13]. As we said, we
extended the homogeneous case to positive orders in [12]. Following the work of Ducamp and Falmagne [8], the term of
biorder has been introduced by Doignon et al. [7] who identify conditions for their representation by two functions. In their
terminology, the domains of the two functions are not necessarily identical but Aleskerov and Masatlioglu [3] use the same
terminology for the particular case of a single domain, like we do in this paper. The same definition for biorder is also used in
the useful survey of threshold representations by Aleskerov, Bouyssou and Monjardet [2]. Recent papers such as Bosi et al. [4]
and [5] propose a (semi)continuous representation of interval orders and state that it can be extended to biorders. Compared
with these “ordinal” approaches, the originality of our work resides in its algebraic nature, which allows us to disregard
the consideration of a topology on the set A. Moreover, we provide uniqueness properties that allow us to “measure” the
intervals or thresholds of our representations. As for the set of open and closed intervals (possibly empty) of the real numbers
to represent possibly non-super-Archimedean orders, it has been used by Nakamura [ 14]. Another possibility is Narens [15],
where non-standard models of the real numbers are considered to treat the abandon of the super-Archimedean condition.
We would also like to point out a recent example of a structure without transitivity but with asymmetry in Abbas et al. [1]
(note their structures are not necessarily representable by two functions like in this paper). Finally, a useful review of orders
that are asymmetric and transitive is Fishburn [10] and a review of nontransitive (but asymmetric) representations can be
found in Fishburn [9].

Notations/writing conventions. We denote by R, Q, Z the sets of real numbers, rational numbers and integers; and we write
N* = Z-o.If X and Y are two subsets of R, we write XY = {rs: r € X, s € Y}.

If R and R’ are two binary relations on a set A, forx, y, z € A, we writexRyR' z < xRy and yR z.

The symbol | [ means disjoint union.

1. The sets R’ ., B and A

>0’
Recalling the definition of R” given in the introduction, for two intervals I, I’ in R*, we have I < I’ < I D I'. Hence, the
relation < is a total order on R" and < on R" extends < on R: it is given by (r, s € R; t € R"):
rf<ster<ster<s,
P <ser<s,
t <oo.
Forr, s € R?, we define
r>s&s<r,
r<s&{r<sandr#s}&s>r.
We also endow R" with the structure of an additive monoid extending the one of R, defined by (r, s € R):
r+st=rt 45t =@ +9)",
r+oo=r"+00=00+00=o00.
Notice that the relation < on R’ is compatible with the operation +. In this manner, (R, +, <) is an ordered additive sub-
monoid of (R?, +, <).
Let Rio = {r € R*: r > 0}; this is a sub-semigroup of R. Consider Rio — R
r\/ — (r—1)+! (r+)v — I‘_l,
(0%)Y = oo, oo’ =0%.

f

>0

X > x the map defined by (r € R-):

It is an involution: for r € Rio, we have (1Y) = r. In particular, it is a bijective map. And for r, s € IR{ZO, we have

r<ser’>s".
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Let R.g X Rio — ]Ru

Zo» (8, 1) = s -1 be the R..¢-set structure on Rio defined by (s, r € R.g):

S-T =Ssr, s-rt=(sr)t,

s-0F=0", s-00=o00.
For (s,r) € R.g X Rio, we have

(s-rY=s1.1".

Let

B=R.oU{q":qe€Q.o}U{0", 00},

A=R.oU{0", o0},

QLo =Q-0U{q": g € Quo} U {0, 00}
We have the inclusions A C B and Qio C B. Moreover, we have R.g-A = A, Q.9 -B =Band Q. - Qio = Qio; ie. Ais
a sub-R. g-set of R. o, and B and Qio are sub-Q- ¢-sets of Rio. The involution x — x induces by restriction three bijective
maps

B— B ={":reRs}UQ.qU (oo},

A— AV ={rt :r € Reo} U{oo},

b b
Q>O - Q>0'
And we have
BUBY = AUAY =R’

>0
BNB' =ANAY = Q.

Remark 1.1. Letr, s € Bsuchthatr > s.Thenr # 0%, s # oo, and either r # s* and then there exists a ¢ € Q¢ such that
r>gq>s,orr =s" and thens € Q.. So in both cases, there existsaq € Q. suchthatr > qg>s. *

2. The sets R (A), R’ (A) and R" (A)

Recall the definition of R (A) and R’(A) given in the introduction. Denote by R; and R, the binary relations on A that are
respectively empty and trivial; i.e. for allx, y € A, we have x(—Ry)y and x R, y. Both belong to R’(A). And we have Rj = R
and R, = Ry.

The set R(A) is endowed with a structure of a Q-q-set: for R € R(A) and q € Q- o, we write q = % withm, n € N*, and
we denote RY the binary relation on A defined by xR1y < mxRny. By (,]), the relation R? is well-defined, i.e. it does not
depend on the choice of m and n such that ¢ = % It clearly belongs to R(A). For R € R(A) and q, ¢’ € Q-¢, we have

(R")7 = RW
And the subset R’ (A) of R(A) is Q- o-stable.
For R € R(A), we denote R’ the binary relation on A defined by
xRy & (forallm, n € N* such that m > n, we have mxRny).

Then R’ € R'(A), and the map R(A) — R'(A), R — R’ is the identity relation on R'(A).
ForR € R(A), therelation R still belongs to R (A) (easy to check). And the map R(A) — R(A), R +— R isaninvolution:
for R € R(A), we have (RV)Y = R.ForR € R(A) and q € Q-, we have
R)Y = R,
(RY = (R)*.
Let R'(A)Y be the subset of R(A) formed by relations satisfying the following condition (,A)" (for all x, y € A):

(hA)V: if (m + 1)xRmy for all m € N*, then xRy.
The involution R(A) — R(A), R — RY induces by restriction two bijective maps, that are the inverse of one another:

R'(A) — R'(A)Y,
R (A)Y — R'(A).
Let R"(A) = R'(A) N R'(A)V. The involution R(A) — R(A), R — R induces by restriction a bijective map
R (A) — R"(A).
Notice that since Ry, Ro € R’(A) and Ry, = R, we have Ry, Ry, € R"(A).
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3. The invariants %, sk

R
X,y 9%,y and Ley

LetR € R(A),and letx, y € A. Let

28, ={mn~" :m, n € N, mxRny} C Q0.
Ifg e :P)fy, then we have the inclusion Qx4 C ?}fy. Therefore
sty = g, +ool
qerf,

is an element of R ;, and we have sf /N Q = »f . We distinguish two cases: either for all g € $F,, we have P, NQ, # ¥,
and then

g _ JOnfPE)TT iRy, # 0

S =
Xy 00 if not;

or there exists as € Q- such that !P)fy = Qss, and then sffyy = s. In particular, we have s,’f,y € BY. The triplet (x, R, y) is said
to be super-Archimedean in the first case, and non super-Archimedean in the second case. Notice that R € R'(A) if and only if
forallx', y' € A, the triplet (x', R, y') is super-Archimedean.

Notation 3.1. For R € R(A), we note AR the set of (x, y) € A x A such that the triplet (x, R, y) is super-Archimedean, and
we let 8% = (A x A) ~ AR. We also define

AR ={x e A: (x,y) € AR, Wy € A},
AR={yeA:(xy) e AR, VxeA),
and

BE=A~ A} (i=1,2).

For R € R(A), since Bf C 8% x 8%, we have the decomposition
AR = AR (BF x B5) | [ A% N (8B x A5 [ [ A% N (A5 x 85 [ [ AF x A5, (3.2)
LetR € R(A),and letx, y € A. Let
R R
tey = (5¢,)" €B.
From what precedes, we have
X, Ry) € At & tf € A
Moreover, we have
xRyeol1esl o <1etf >1T otk 51 (3.3)
X,y X,y — Xy — X,y . ’

And for all m, n € N*, we have

Lemma 34. Let R € R(A).

(1) For (x,y) € AR, we have

t,, = . . .
yx sk, if s§, € (0%, oo} orif sy, = q* withq € Q..

R {r ifsiy =rtwithr € Rog ~ Q9
(2) For (x,y) € B8R, we have

RV _ R
ty.x = Sx,y € Q-p.
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Proof. Let (x,y) € A x A. We have J’fi ={q7":q€ Qo PN}
Suppose first that t{, € {07, oo}. Then (y, x) € AR and

RV _ (R +
tyx =Sy, € {07, 00}

Suppose now that t, € R.o. We thus haves{  =r™ forar € R.o,and

y
v -
2R =QuoN[r', +ool.
We distinguish two cases: either r € R.g ~ Q., and then (y,RY,x) € AR and tﬁi = r;orr € Q.p, and then
(,RY,x) € 8% and tﬁi =rt.
Suppose finally that £, € B \ A. We thus have s} = qforaq € Q.o, and

PR = Qo0 g7, +ool.

\ V'
Therefore, we have (y, RV, x) € A% and tﬁx =q O

By (3.4), for R € R(A), we have

B ={(.x) eAxA:st, e{qg":qe Q). (35)

4. The function &g

For R € R(A), denote &y : A x A — B the function (x, y) — t,fy. Following Section 3, for R € R(A) and (x,y) € A X A,
we have (x, y) € AR < ®@(x,y) € A; in particular, we have

Re R'(A) & dr(A x A) C A. (4.1)

Proposition 4.2. For R € R(A), ®y is the unique function @ : A x A — B satisfying (forallx, y € Aand allm, n € N*):

(1) @(mx,ny) = 7 - P(x,y);

(2) xRy & @(x,y) > 1.

Conversely, any binary relation R* on A such that there exists a function ®* : A x A — B satisfying (1) and (2), belongs to R(A).

Proof. The converse is straightforward, and for R € R(A), the function @y satisfies the conditions (1) and (2) of the
proposition. Let R € R(A), and let &, &' : A x A — B be two functions satisfying the conditions (1) and (2) of the
proposition. Suppose that there exists a couple (x,y) € A x A such that ®'(x,y) # @ (x, y). By symmetry, we can suppose
that @'(x,y) > ®(x,y). By Remark 1.1, there exist p, ¢ € N* such that pg~'®’(x,y) > 1 > pq~'®(x, y). Therefore pxR qy
and px (—R) qy; contradiction. Hence & is unique. O

The functions &g, and @y, are constant, given by

Pg, =07,
Pg,, = 00.

And forR € R(A) and q € Q-(, we have
Dra = q - .

For R € R(A), the function &g : A x A — A is given by

Pr(x,y) ifPrx,y) € A
q if or(x,y) =q".

We thus have @ > @ with the equality if and only if R = R". For R € R'(A), let
RAr={S€RA):S =R}
be the fibre of the projection R(A) — R’(A) above R. We thus have
R(A)R =1{S € R(A) : Dr(x,y) € {Ps(x,y), Ps(x,y) 7}, Y(x,y) € A x A}.
Let R € R(A). Following (3.3), for x, y € A, we have xR" y if and only ifs’ye’x > 1. Define ay’fx € Bby
R {Sﬁ,x ifsfyy € Qio

g, =
X e RO
Y ifs,, =r" withr € R.g \ Q0.

Pp(x,y) = l
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R R R . R . . .
Then we have oy, ., = 7 - 0,), and xRy & o/, > 1. Therefore, the functionA x A — B, (x,y) + o, coincides with

®gv.And by (3.4), for x, y € A, the triplet (x, RY, y) is super-Archimedean if and only s’y"’.x & {qt : q € Q.p}; ie. if and only
if £, & Q.. We deduce that

Re R'(A)Y & Pr(Ax A) C B~ Q. (4.3)
By (4.1) and (4.3), for R € R(A), we have
Re R'(A) & Pr(A x A) C A~ Qp. (4.4)

Let R%°°(A) be the set of relations R € R(A) such that ®(A x A) C {0F, co}. By (4.4), we have the inclusion
R (A) C R"(A).
Precisely, the involution R(A) — R(A), R — R induces by restriction a bijective map
R7®(A) —> RP2(A).

5. The functions ¢, ¢ : ]Rio xR, — B

i

>0’
Q={(r,r') €Rog X Rog : "' € Qug}.
The subsets 8~ and 8> of R ; x R’ ; are given by:
B ={"1): (1) €@},
B==8" UQU(IT, ) (1) ea)
And the subsets 8;” and 87 (i = 1, 2) of ]Rio are given by:
By ={r" :r e R.o},
°r82> =R.,,
B =87 =B UB,.
Following (4.2), for R € {>, >}, there exists a unique function &y, : R”)O X Rlo — B satisfying (for all r, r’' € Rio and all
m, n € N*):

(1) @g(m-r,n-1')y=2.d(,r);
2)r>r & op(r, 1) > 1.

The function @, is explicitly given by:
D.(r,00) = (0", 1) =07 (r e Ry,

The relations > and > on the R.g-set R_ ,, are positive homothetic orders, and we have >= (>)". Let

®.(00,1) =00 (r € R~ {00},
P.(r,0") =00 (reR,~{0%)),
o (r,ry=d.(rt r = () =1 (1, 1 € R.y),
Ot )y =r""r (r, 7 €Rug, I’ 'r & Quo),
Ot ) ="' (1, 1 €Rog, I'T'r € Qu).
And the function @ is explicitly given by:
®-(00,1) = d=(r,0") =00 (r e R"),
. (r,00) =0 (r e R, ~ {oo}),
@.(0%,r) =0 (reR,~ {07},
D-(r,r) =t rH =t ) =r""r (1 €Rog, 1T € Quy),
O.(r.r) =t D =t ) ="'t (1, 1 € Rag, I € Qu),
O-(r,r’ )y =r"""r (r, 1 €Roy).
By the above formulas, forR € {>, >},r, 1’ € ]R;O and a, b € Q.¢, we have

@pa-r,b-1)y=b"la- dx(r, 7). (5.1)

1

Remark 5.2. Thanks to the above formulas, for R € {>, >}, we can explicitly describe the relation R’ € R'(A). *

Remark 5.3. The relations > and > induce by restriction two positive homothetic orders on the Q. o-set B. And the functions
B x B — B associated to these two orders are of course the restrictions to B x B of the functions ¢. and @>. *

Please cite this article in press as: B. Lemaire, M. Le Menestrel, Generalized homothetic biorders, Discrete Mathematics (2008),
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6. Generalized homothetic biorders

Let R be a binary relation on A. We say that R is a generalized homothetic biorder if there exist two functions u;, u; : A —
]Rio satisfying (for all x, y € Aand all m € N*):

(1) w(mx) =m-u;(x) (i =1, 2);
(2) xRy & u1(x) > uy(y).

Clearly, any generalized homothetic biorder on A is an element of R(A). And the relations Ry and R, are generalized
homothetic biorders: for R = Ry, we can take for (ug, uy) the pair of constant functions (0%, co); and for R = R, we
can take for (uj, uy) the pair of constant functions (oo, 0™).

Let R,(A) be the subset of R (A) formed by generalized homothetic biorders. And let

R,(A) = R, (A) N R'(A),
RI2(A) = R, (A) N RI2(A).
We thus have the inclusions
{Rg, Roo} € RV°(A) C Ro(A) N R"(A) C RL(A) C Ru(A).

Definition 6.1. LetR € R,(A). We call representation of R a pair of functions (uy, u;) on A with values in Rio, satisfying the

conditions (1) and (2) above. More generally, if E is a sub-N*-set of R;O, we call representation of Rin E a pair of functions
(uq, up) on A with values in E, satisfying the conditions (1) and (2) above.

Lemma 6.2. Let R € R,(A), and let (uq, uy) be a representation of R. For allx, y € A, we have
Dr(x,y) = D= (u1(x), u2(y))-

Proof. Clear. O
For R € R(A), we define
Al={xc€A:xRy, JycA}={xcA: P} #0, Iy cA},
A ={ycA:xRy, xe Al ={ycA: P}, # 0, I c A},
and
Al, ={xeAf:yR'x, Iy c A} = {x € AT : P, # Q0. Ty € A},
A ={ycAS:yR'x, e A} ={y € AL : P, # Qu0. X € A}
We have the inclusion
BFCAf, x AS . (6.3)
Notice that
A=peA=0cR=Ry
and that
A, =06 A =06 Re R"™A).
LetR € R,(A), and let (uq, uy) be a representation of R. Then we have
B ={(xy) e AxA: W%, u(y)) € B7}.
We then deduce that
B¥=(xeA:u(x) =u,(»)", Iy € A},
BY={yeA:ui(x) =w(t, I A
IfR # Ry, then u; # 07 and u; # oo, and we have
AR ={xeA:u(x) # 07},
A5 ={y € A:uy(y) # oo}.
And if R & R?*(A), then u;(A) ¢ {0%, 0o} (i = 1, 2), and we have
Af, ={xeA:u(x) €{0F, 00}},
A, ={yeA:u(y) ¢{0%, 00},

Please cite this article in press as: B. Lemaire, M. Le Menestrel, Generalized homothetic biorders, Discrete Mathematics (2008),
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Lemma 6.4. Let R € ﬂ‘f*“’(A) . {Ry}. There exists a representation (uy, u;) of Rin {0T, oo}, and this representation is unique.

Proof. For (x,y) € A x A, we define

o = |00 ifxe AR
=10t otherwise
and
_Jot ify e A%
n(y) = {oo otherwise.

SinceR € JQ?W(A), we have xRy < (X,y) € A’f X AZR. Therefore, the pair (uq, u;) represents R. And since R # Ry, the sets
A’f and A§ are nonempty, therefore (u1, u,) is the unique representation of Rin {0, c0}. O

Notice that in (6.4), without the condition u;(A) C {0", oo} (i = 1, 2), the uniqueness property is no longer true: for any
two morphisms of N*-setsu; : A — A~ {07} andu, : A — A ~ {oo}, the pairs (u;, 07) and (oo, u,) represent Ry.. Note
also that for R = Ry, the Lemma 6.4 is not true: the pairs (0, 07), (0, 0o) and (co, 00) represent Ry.

Lemma 6.5. Let R € R,(A) !Rf”""(A). There exists a representation (uy, uy) of R such that for i = 1, 2, we have ui(Af) C A
In particular, we have u;(A) C A; and if R € R'(A), then (uy, uy) is a representation of R in A. Moreover, up to multiplication
by an element of R, the pair (u;, uy) is unique: if (u}, u)) is another representation of R such that for i = 1, 2, we have
u,f(,Af) C A, then there exists a .. € R.q such that (u}, uy) = (A - uy, A - uy).

Proof. Let (vq, v;) be a representation of R. Fori = 1, 2,let u; : A — A be the function defined by

vi(x) ifvi(x) € Aorx € BF
r ifvi(x) =r" andx € AL

ui(x) = {

Since {(x,y) e AxA:u;(x) = ()T} C Bf X £§, the pair (u;, uy) is a representation of R. By construction, fori = 1, 2,
we have ui(Af) C A.And since the set {y € A : v,(y) € B~ A} is contained in A%, we have u,(A) C A.Finally,ifR € R'(A),
since AR = A = AR, (uy, up) is a representation of R in A.

Let (v}, u}) be another representation of R such that fori = 1, 2, we have u,f(Af) C A.By(6.2), forx, y € A, we have

®- (u1(x), u2(y)) = Pr(x, y) = D= (U (%), U5(¥)).
SinceR ¢ R‘f"’o(A), we have u;(A) ¢ {07, oo} (i = 1, 2), and hence:
- onA~ A% we haveu; = v} = 0F;
- on Af < A}, we have u; = ) = oo;
- onA ~ A¥, we have u; = ), = oo;
- onAf < A%, we have u, = u) = 0%,
On the other hand, for (x, y) € (A§ x A5) N (AF, x Af ), we have u; (%), uz(y), uj(x), uy(y) € R-oand

uy () U () = Pr(x,y) = (1) U (x).
Therefore, if A% x A5 5 (J, then there exists a constant A € R such that for all (x, y) € A% x A%, we have
U ), Uy (¥) = (A - u1 (%), A - U2 (¥)).

In particular, if R € K’'(A), the lemma is proved.

Suppose now thatR & R’(A). Then the set 8% = qﬁR’l (B~ A) is nonempty. And for (x, y) € 8%, we haveu;(x) € ]Rio NA,
U (y) € Rog,and u,(y) "' - u;(x) = q* foraq € Q.o; in particular, we have ®x(x, y) = u,(y)~! - u;(x). For (x, y) € BF, we
thus have

L@ w ) =uy0) T U x) € {gF 1 g € Quo)
Therefore, there exists a constant . € R such that for all (x, y) € 8%, we have
U (), u, (1) = (- W (X), w - U (¥)).

In particular, if @R_l (R-) = @, the lemma is proved.
Take a couple (x,y) € @R_l(Rw) C 4R, and let us show that Uj(x) = p-ur(x)and uy(y) = - up(y). Ifx € BR, then

there exists a b € A such that (x, b) € 8%; and we have U} (x) = p - up(x). Suppose that x € A’f. Then u; (x), uj(x) € Roo.If
v} (x) > pus(x), then there exist m, n € N* such that

uj(mx) > uy(nb) = puy(nb) > puq(mMx);

Please cite this article in press as: B. Lemaire, M. Le Menestrel, Generalized homothetic biorders, Discrete Mathematics (2008),
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contradiction. Also, if u} (x) < puq(x), then there exist m, n € N* such that
v} (mx) < u)(nb) = puy(nb) < puq(mx);

contradiction. Hence u}(x) = uuq(x). The equality u,(y) = p - uy(y) is obtained similarly. This ends the proof of the
lemma. O

Notice that in (6.5), it follows from the above proof that without the condition u,-(Af) C A (i = 1, 2), the uniqueness
property is no longer true.
Lemma 6.6. Let R € R,(A), and let (uq, uy) be a representation of R. We have:
R € RVX(A) ¢ ui(A) C {0F, 00} or uz(A) C {0%, o0},
Re R.(A) & uy(AMN{rt :r € uy(A) NR.o} = 0.

Proof. For (x,y) € A x A, we have ®(x,y) € {0T, oo} if and only if u;(x) € {0F, 0o} or u,(y) € {0T, oo}; and we have
(x,y) € BRif and only there exists a g € Q- such that u;(x) = q - u,(y)*. This ends the proof of the lemma. O

7. Generalized homothetic intervals (resp. weak) orders

A generalized homothetic biorder on A is called a:

- generalized homothetic interval order if for any (i.e. for one) representation (uq, u;) of R, we have u; < uy;
- generalized homothetic weak order if for any (i.e. for one) representation (u, u;) of R, we have u; = u,; in which case we
say that u, is a representation of R.

Let us recall that a relation binary R on A is said to be:

- reflexive if for all x € A, we have xR x;
- symmetric if for all x, y € A, we have xRy < yRy;
- transitive if for all x, y, z € A, we have xRyRz = xRz.

For all binary relations R and R’ on A, we note R N R’ the binary relation on A defined by
x(RNR)y & xRyandxR'y.
Note that for any binary relation R on A, the indifference relation S = RY N (—R) is symmetric. Indeed, for x, y € A, we have
xSy < x(—R)yandy (—R) x.

Lemma 7.1. Let R € R,(A), and let S = RY N (—R). Then R is:

- a generalized homothetic interval order if and only if S is reflexive;
- a generalized homothetic weak order if and only if S is reflexive and transitive.

Proof. Let (uq, uy) be a representation of R. For x, y € A, we have

uz(x) > ug(y)
xSy {ui(y) > 1),

Therefore, S is reflexive if and only if u; < u,; i.e. if and only if R is a generalized homothetic interval order.
Suppose that Ris a generalized homothetic weak order. Then u; = uy,andforallx, y € A,wehavexSy < u;(x) = u (y).
Therefore S is transitive.
Conversely, suppose that S is reflexive and transitive. Suppose that there exists a x € A such that u;(x) # u,(x). Since
xS x, we have u;(x) < uy(x).Letq, ¢ € Q- suchthatqg < 1 < ¢’ and
qui(x) < u1(®) < qua(x) < (X < U(x0) < qua(x).
Write g = % andq = '::—/ withm, n, m’, n’ € N* and lety = nn'x,z = mn’x and t = m'nx. Then we have

ur(2) <u(y) < ua(2) < u(t) < ux(y) < ua(t).
Hence zSySt and z (—S) t; contradiction. Therefore, u; = u,. 0O

Remark 7.2. The relation > on Rio is a generalized homothetic weak order: it is represented by the identity morphism
]Rt i
>0 - R>0’ *

Remark 7.3. The empty relation on A is a generalized homothetic weak order: the constant functions u = 0" and u = oo
represent Ry. On the contrary, the trivial relation on A is neither a generalized homothetic weak order nor a generalized
homothetic interval order: for all representations (uy, uy) of Ry, we have u; > u;.  *

Please cite this article in press as: B. Lemaire, M. Le Menestrel, Generalized homothetic biorders, Discrete Mathematics (2008),
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8. An example: The relation > on T (A)

Let T(A) = A x R(A) x A. We endow T (A) with the structure of a Q-q-set (hence a fortiori of a N*-set) defined by
q-(x,R,y) = (x,R%, y), and we note > the binary relation on T(A) defined by: (x1, Ry, y1) > (X2, Rz, ¥2) if and only there
exist m, n € N* such that mx; Ry ny, and mx; (—R;) ny,.

Lemma 8.1. The relation > on T(A) is a generalized homothetic weak order. Moreover, the function u, : T(A) — B given by
u, (x, R, y) = ®r(x,y) is a representation of > in B, and a morphism of Q-q-sets.

Proof. The function @ is clearly a morphism of Q.g-sets. Let (x1, R1, y1), (X2, Ry, ¥2) € T(A). We have (x1, Ry, y1) >
(X2, R, y») if and only if there exist m, n € N* such that 7 - &g, (x,y) > 1 > T - @, (x,y); i.e. if and only there exists
aq € Q.o such that &g, (x,y) > q > P, (x,y). By (1.1), we obtain that

(X1, R1, Y1) > (X2, R2, ¥2) & Pg, (%, y) > P, (X, ¥).

Hence the lemma. O

Let - the binary relation on T (A) defined by - = >". It is given by

(%1, R1, ¥1) & (%2, Ra, ¥2) & s (%1, Ry, ¥1) = us (%2, Ry, y2).

Let ~ be the indifference relation associated with >, defined by
(X1, R1, ¥1) ~ (X2, R2, y2) & u, (x1, R1, y1) = us (X2, Rp, ¥2).

This is an equivalence relation on T (A). The quotient set
T(A) =T@A)/ ~

inherits the Q. ¢-set structure of T(A), and u, : T(A) — B is factorized through an injective morphism of Q. o-sets
U, : T(A) — B.

The study of the properties of this morphism will be the subject of a further work.

9. Characterization of generalized homothetic biorders

Consider the six following properties (for all x, y, z, t € A):
(1S) if (x, t) € AR and xRy RY z Rt, then we have xR t;
(2S) if (x,t) € AR, (y,2) € Ag,] X A’f’z and xR t, then there exist m, n, p € N* such that we have mxRny R" pz Rmt;
(3S) if (x, t) € BRand t RV y Rz RY x, then we have t R x;
(aS) if (x, t) € BX, (y.2) € A¥, x AS | and t R¥ x, then there exist m, n, p € N* such that we have mt R¥ ny R pz R¥ mx;
(5S) The fibre ch_l (0%) is empty or union of sets of the form {x} x A or A x {y}, and the fibre ch_l (00) is empty or union of
sets of the form {x} x A% or AR x {y};
(6S) If (x,y) € BF x BX, then we have (y, x) € AR

5

Remark 9.1. In the condition (¢S), we can replace the set 8% x B by the set (BF x 85) N AR. Indeed, by (3.4), we know
that for (x,y) € 8%, we have (y,x) € AR . For (x,y) € 8F x 8%, the triplet (x, R, y) is potentially non super-Archimedean
in the sense that there exist x’, y’ € A such that the triplets (x, R, ") and (x', R, y) are non super-Archimedean. And the
condition (¢S) means that the triplets potentially non super-Archimedean (x, R, y) behave as “true” non super-Archimedean
triplets. O

Lemma 9.2. Let R € R(A). If R satisfies ( 5S), then we have

o' (B~ (0T, 00}) = AT, x AS .

Proof. For x, y € A, we have
x e A\ AY & dr(x, A) =0T,
yeA-AR & or(Ay) =07,
and
x € Af AL, & Pr(x, AS) = o0,

y e A5V AS L & or(AY,y) = 0.
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If R satisfies (5S), we deduce that
Dr(x,y) =0T & xecA~Afory e A AR,
Dr(x,y) = 00 & x € AL W Af ory € A5 A5 .

Hence the lemma. O

Proposition 9.3. For R € R(A), we have R € R,(A) if and only if R satisfies the properties (;S)fori=1,...,6.
Proof. Let R € R,(A), and let (uq, uy) be a representation of R. Then the relation R¥ on A is given by
xRy & uy(x) = up (y).

By looking at description of the sets B8R, A’fyz and A’;‘] given in the Section 6, it is easy to verify that the properties (;S), (2S),
(3S) and (4S), are true for R. For x, y € A, we have ®y(x,y) = 07 if and only if u;(x) = 0" or u(x) = oo; and we have
®r(x,y) = oo if and only if one of the two following conditions is satisfied:

- Up(x) = oo and u;(y) # oo;

- u;(x) 20" and u;(y) = 0™.
Therefore R satisfies (5S). As for the property (S), let (x,y) € Bf X £§. By Remark 9.1, we can suppose thst (x,y) € AR
By Section 6, we have u;(x) = r+ and uy(y) = r’ for some r, 1’ € R.g. And by (3.4), we have (y, x) € A8 if and only if
t)’f_y € R.g \ Q-¢. But by (6.2) and the Section 5, we have

-1 . —1
R _{r’ r ifr'~r e Rug ~ Qug

L, -1 o1
.y @~ T ifr’Tr € Qup.

But the case 1’ 'r € Q- is not possible, because (x, y) € AR. Hence R satisfies (5S).
Conversely, let R € R(A) be a relation satisfying the properties (;S) fori = 1, ..., 6. We can suppose that R # Ry. Then

AR =£ ¢ and AR + ¢1. By (sS), for (x, y) € @' ({07, 00}), we can let
_ [0t if dr(x,A) =0
") = {oo if dr(x, AY) = o0
and
_ if dr (A%, y) = o0
wLy) = {oo if dR(A, y) = O
The function u; x u, on Q>R_1({0+, oo}) is well-defined, and for (x, y) € d>R_1({O+, 00}), we have
XRy & u;(x) =00 > 07 = uy(¥).

In particular if R € R%*(A), then qu_l({O*, o0}) = A x A, the functions uq, u, : A — {0, 0o} are morphisms of N*-sets,
and the relation R is a generalized homothetic biorder.
We now suppose that R ¢ R”>(A). Then A , # ) and A§ | # . And by (9.2), we have

o (B~ {0T, 0o}) = AT, x A .
We hence need to extend the function u; x u; on Af , x A§ |. Let a couple (a, b) € A}, x A5 |. For (x,y) € AR, By (;S)and
(S), we have the equality (cf. [13] Lemma 3.4) ' '

PR’

_ R R
'?x,y - ‘(Px,b‘jb,a‘(Pa,y' (*)

Also, for (x,y) € B, by (sS) and (4S), as in the proof of Lemma 3.4 of [ 13], we obtain the equality
PR = PR PR PR (+)
Suppose first that R € R'(A) ~ R**(A). Then (a, b) € A®, therefore 55.17 =rtforar € R.g; and by (3.4), we have

RV __ r ifr e R>o AN Q>0
ba = 1t ifr € Q.

In particular, (b, a) is an element of A¥ , x AR . Let (x, y) € AR, x A . Since (x, b) and (x, a) are elements of A} , x A |, ¢k,
and tff,y are elements of R o, and by (), we have the equality

rR

_ R R
Xy — tx,brtayy [S ]R>().
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Let
u(x) = t)'ib
and
wy) =R )7
Then we have
XRy & t,’iy > 1< ui(x) > u(y).

The functions u;, u, : A — A thereby defined are morphisms of N*-modules, and the relation R is a generalized homothetic
biorder.

Suppose now that R € R(A) ~. R'(A). Then 8F (C A’f’z X A’zz,l) # ¢, and we can suppose that the pair (a, b) has been
chosen such that:

- (a,b) € AR if the inclusion B® C Af, x Af | is strict;
- t8, € Quoiftheset {(d',b') € AR .t} € Q.o} is nonempty.
By (3.4), three cases may appear:
- case 1: t{fL =5k, =q€Q.if (a,b) € BY;
- case 2: tﬁz = (tc’f’b)*1 =1 € Rog~ Q.if (a, b) € AR and tib g Q-o;
- case3: tf, =k =q* e B\ Aif(a,b) € ARand ¥, € Quo.
Denote Rio — A, r — T the projection defined by
. {r ifr e A

s ifr=stforas e R.,.

By (3.4), for (x,y) € A’f’z x Af |, we have fﬁi = Efyy. Take (x,y) € A}, x A’il. leta =tf,, B = saR,y. By (%), if (x, y) € AR
(which excludes case 1), we have

r@af~" incase2

gaB~' incase 3.

R
ey =

And by (xx), if (x, y) € B, we have
-a@p~! incase1
th,={1r"-ap™" incase2

g™ -&@B~! incase3.

Let us show that

q"-@>pB incasel
+ .5 B
ffy>1© r~ a~>,8 %ncasez‘ . .
: qo > B incase3ifx € Ajory € A,
qgt-a@>p incase3if(x,y) € 8% x B5.

Case 1 is obvious. _ _

In case 2, if (x,y) € A%, wehavet{ > 1<« rad > f;andif (x,y) € AR and r@ = B, then t§, = 1, which is impossible
(since we are in case 2). _

Suppose that we are in case 3.1f (x, y) € 8" (C B8f x 85),wehavet > 14 q*-& > B.Suppose then that (x, y) € A".
Ifx € Af ory € Af, then we have tf, > 1 & qa > B. There remains the case (x,y) € 8% x 8F. This is when we use
property (sS): we have tf, > 1 ¢ q& > B;and if & = B, then t}, = q&B~! = 1 € Q.., therefore (by (3.4)) (v, x) & AR,
which contradicts property (S). We thus have t)ﬁy >1leq-a> B

Let
gt -, incase1l
+ R

0y (x) = r~R typ }n case 2 - ;
qtyp incase 3ifx € A;
q" -y, incase3ifx € Bf

and
<R
Uy = Sa.y-
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Then we have
XRy & t)'iy < ur(x) > uy(y).

The functions uq, u, : A — A thereby defined are morphisms of N*-modules, and the relation R is a generalized homothetic
biorder. This ends the proof of the proposition. O

Remark 9.4. ForR € R'(A), the properties (3S), (4S) and (gS) are empty. Therefore, properties (;S), (;S) and (sS) characterize
the relations R € R,(A). «

Remark 9.5. In general, the inclusion R, (A) C R(A) is strict. For instance, take for A the union N*x | | N*y of two copies of
N*, endowed with the natural structure of N*-set, and let R stands for the binary relation on A defined by (for m, n € N*):

- MXRnx & m > n;

- mxRny for all m, n;

- myRny & m > n;

- my (—R) nx for all m, n.

The relation R is h-independent and h-positive, but it is not a generalized homothetic biorder.

Remark 9.6. The positive homothetic order > on Rio is not a generalized homothetic biorder. Indeed, the property (gS) is
not satisfied: for r, ' € R such that r'~'r € Q.o, we have (', 1) € (8F x 8% < 8Rand (r*,1) € B8~. «

10. “Operations” on generalized homothetic biorders

i

>0’

Let us consider the projection ]R;O — A, r — 7 defined in the proof of (9.3). And for any functionu : A — R_ ,, denote

it : A — A the function defined by 1(x) = u(x).

Let R € R,(A), and let (uy, uy) be a representation of R. For ¢ € Q. ¢, the positive homothetic order R? is a generalized
homothetic biorder represented by the pair of functions (g-u+, uy). Similarly, the positive homothetic order R’ is a generalized
homothetic biorder represented by the pair of functions (iiy, iiy). As for the order R, for x, y € A, we have

xRy & ua(x) > ug(y).

Lemma 10.1. Let R € R,(A), and let (uy, uy) be a representation of R. For all x, y € A, we have:
Py (X, ) = P (U2(X), u1(¥)).

Proof. Clear. O

Note R, (A)" the subset of R (A) formed by orders R such that there exist two functions v, v, : A — Rio satisfying (for
allx, y € Aand allm € N*):

(1) vi(mx) = mu;i(x) (i =1, 2);
(2) xRy & vi(%) = v2(¥).
LetR € R,(A)Y, and let (uy, uy) be a representation of R¥. Then we have
B ={(x,y) eAxA: (u(x),u1(y)) € B7}.
The involution R(A) — R(A), R — RY induces by restriction two bijective maps
Re(A) = R.(A)Y,
Re(A)Y = R (A),

that are inverse one another.

Remark 10.2. Directly or through the bijection R,(A) — R.(A)", one can characterize the relations R € R,(A)" as in
Section 9. But we will not do it here. It is also possible to characterize the relations R € R,(A) such that RV € R,(A), as in
Section 9 or in terms of a representation (u1, u;) of R (the following result is given without proof):

(1) LetR € =7%?'00(A) < {Rg}, and let (u;, uy) be the representation of Rin {0", co}. ThenRY € R.(A) if and only if u; = oo or
Uy = o+.

(2) Let R € Ro(A) R?"’O(A), and let (uq, uy) be a representation of R. Put X = u;(A) N uy(A). Then RY € R,(A) if and only
ifXN{0T, 00} =@Fand X N {rt : r € X N R.o} = @. Moreover, if R € R, (A) and (uy, uy) is a representation in A, then
RY € R, (A) ifand only if X N {0T, 0o} = @, andRY € R,(A) ifandonly if X =@. *
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11. The relation R; for R € R4(A)

For R € R(A), we note R; the binary relation on A defined by (for all x, y € A):
xRy & Pr(x,y) > PRy, X).

Since for x, y € Aand m, n € N*, we have &g(mx, ny) = %@R(x, ¥), Ry is still a positive homothetic order. For R € R(A),
the indifference relation S; = R} N (—Ry) associated with Ry, is given by (forx, y € A)

xS1y & Prx,y) = PRy, X).

In particular, S; is reflexive. Moreover, we have the

Proposition 11.1. Let R € R,(A). Then R, is a generalized homothetic weak order.

Proof. Let (uq, uy) be a representation of R. We must define a morphism of N*-setsu : A — Rio such that for all x, y € A,
we have xRy < u(x) > u(y).

IfR € {Ry, Ry}, then Ry = Ry, and the constant functions u = 0" or u = oo can be chosen. We can thus suppose that
R & {Ry, Roo}. By (6.4) and (6.5), we can also suppose that:

- ifRe =?‘2?'00(A), then (uy, uy) is the representation of R in {0, co};
- ifR € Ro(A) ~ RP®(A), then u; (AF) C Aand uy(A) C A.

Since R ¢ {Ry, Ry}, we have u; # 0 and u, # oo. And we also have:

- ifu, = 07, then R € RY*(A) and u;(A) = {07, oo};
- ifu; = oo, thenR € R (A) and u,(A) = {0*, co}.
Ifu, = 0%, then forx, y € A, we have

oo ifui(x) =00
¢R(va) - {0+ ifU](X) — O+:

in particular, R, is a generalized homothetic weak order represented by the function u = uy. If now u; = oo, then for
X, y € A, we have

oo ifuyy) =0*
‘DR("’”—{W if 15 (y) = oc;

in particular, R; is a generalized homothetic weak order represented by the function u = u3, defined by u(x) = u,(x)". We
can then suppose that u; # 0" and u; # oo.

By (5S), for (x,y) € <DR_1({O+, 00}), we have &g(x, A§) = dg(x,y) or Pr(AR,y) = @Pr(x,y). And for x, y € A, by the
hypothesis above, we have

Pr(x, A) = 00 & Uy (X) = 00,
Pr(x, AY) = 01 & u (x) = 07,
Pr(AY,Y) = 00 & Us(y) =0,
Pr(A},y) = 0" & uy(y) = oo,
Recall that AT, = {x € A: u;(x) & {0F,00}}and AS | = {x € A : uy(x) & {0OT, o0}}. Hence for x € A~ (A}, NAS ) =

(AN AT,) U (AN AS ), there exists ai € {1, 2} such that u;(x) € {0, 0o}, and we can let

oo ifuj(x) = cooruy(x) =01
u) = {O+ ifu;(x) = 0% or uy(x) = oo.

From what precedes, the element u(x) € {0F, oo} is well-defined. Besides, for x € A’f‘z N A§_1, since uy(x) € Rio ~ {07, oo}
and u,(x) € R, we can let

V() = U (%) - 1 (x) € RL; ~ {07, 00}
and

v ifu) e Rog
U = {(rl/z)+ if v(x) = 1.

The functionu : A — Rio thereby defined, is a morphism of N*-sets. And for x € A, we have

xe AN & u®x) e A
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We must check that for all x, y € A, we have
Dr(x,y) > PRy, %) & u(x) > u(y).
Takex, y € A.Ifx, y € A, N A§ |, we have
Dr(x,y) > DRy, X) & D= (U1(%), ua(¥)) > D= (U1(Y), U2(x))
S ) mE > uE T Q)
S v(x) > v(y)
& ulx) > u(y).
If (x, ) € &7 ({07, 0o}) and (v, x) € ;' (B ~ {0, o0}), we have
Pr(X,y) > PRy, x) < Pr(x, A) = oo or Pr(A, y) = 00
& u(x) = ocoru(y) =07,
< ux) > u®y).
If (x,y) € @7 (B ~ {0, 00}) and (y, x) € &' ({0, o0}), we have
Dr(x,y) > Dr(y,X) & Pr(y, A) = 0" or PR(A, x) = 0F
< u(y) =07 or u(x) = oo.
< ux) > uy).
Finally, if (x, y), (v, Xx) € ®z({0T, oo}), we have
Dp(X,y) > Pr(y,X) & Pg(x,y) = oo and Dp(y, x) = 0"
& u(x) =ooandu(y) =07.
& ulx) > u(y).
This ends the proof of the proposition: R, is a generalized homothetic weak order, represented by u. O
To formulate the following results, it is convenient to write:
oo =00 (re]Rio),
0t .r=0" (reR),
007] — 0+
0™ = o0.
Beware: we have co - 07 = oo and 0" - co = 0™,
Corollary 11.2. Let R € R,(A), and let (uq, uy) be a representation of R such that:

- if R = Ry, then (uy, u;) = (0%, 00);
-ifRe ﬁ?'“(A), then (uq, uy) is the representation of R in {0, co};
- If R € Ru(A) ~ RV>°(A), then uy (AR) C A anduy(A) C A.

Thus, the functionu : A — Rio defined by

o0 if u1(x) = oo and u,(x) # oo
00 if u;(x) # 0% and uy(x) = 0™
ux) = 40" if u1(x) = 0% or ux(x) = o0
1/2

r if up(x) - w1 (x) =1 € Rog
)T ifuy(x) - usx) =1 e R A

is a representation of Ry. And letting y, y~ : A — A be the functions defined by

00 if u1(x) = oo and uy(x) # 0o
_Joo if u;(x) # 0% and uy(x) = 0™
y®) = 1o+ if u1(x) = 0% or u,(x) = c0

[ua(x) "' (x)]?  otherwise
and
y =y,
we have (y -u, y~ - 1) = (uq, Up).
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Proof. IfR = Ry, thenu = 0%,y =0t and (y -u, y~ - @) = (0%, 00) = (uq, uz). IfR = Ry, thenu = 00, y = 00 and
(y -u,y~ -11) = (00, 0") = (uy, up). Note that in both cases, u is a representation of R; = Ry. If now R ¢ {Ry, Ry}, then u
is the representation of R; built in the proof of (11.1); and we verify that (y - u, y~ - 1) = (U1, uz). 0O

Let A/N* be the quotient-set of A by the equivalence relation ~y+ on A defined by

X ~nx ¥ & there exist m, n € N* such that mx = ny.

Corollary 11.3. Let R € R,(A). There exist a morphism of N*-setsu : A — ]Rio and amap y : A/N* — A such that (for all
X, y€A)

(i) u(Af) C A,

(i) y ' (00) = u™' (),

(i) y7'(0%) = u~'(0T),

(V) xRy & y(0 -u@) > y® ™" - i)

Moreover, up to multiplication by an element of R..o, the pair (u, y) is unique: if (u', y’) is another pair of maps like above and
satisfying the conditions (i), (ii), (iii), (iv), then there exists a A € R.q such that (v, y') = (A - u, y).

Proof. The existence of the pair (u, y) results from the Corollary 11.2; note that by construction,u : A — Rio is amorphism
of N*-sets, and y : A — A factorizes through A/N*. The uniqueness of the pair (u, y) is a consequence of the uniqueness
property in Lemmas 6.4 and 6.5. O

Corollary 114. LetR € R,(A),and letu : A — Rio and y : A/N* — A be a morphism of N*-sets and a map, satisfying the
conditions (i), (ii), (iii), (iv) of (11.3). Then u represents R;.

Remark 11.5. ForR € R(A)\ R.(A), the relation R is not always a generalized homothetic weak order. We can for instance
verify that the relation R of the Remark 9.5 satisfiesRy = R.

Remark 11.6. For R € R(A) and n € N*, we define by induction an order R,; € R(A): we put R,;1 = (Ry)1. For all
R € R(A) and all n € N*, one can verify that R, = R;. *

12. Comments

The Corollary 11.3 is a generalization of [ 13]. Indeed, in [ 13] we have obtained the same result but only for homothetic
interval orders on A. Representing a relation R € R,(A) by a pair (u, y) as in (11.3) rather than by a pair (uy, u,) like in (6.4)
and (6.5), has the advantage of showing the underlying generalized homothetic weak order R, (represented by u). We can
then “see” R as a deformation of Ry, the deformation being represented by the twisting factor y : A — A. This naturally
leads to group in a single family the relations R € R, (A) having the same underlying generalized homothetic weak order R;.

The introduction of the set R’ ; is not merely an ad hoc construction to treat the abandon of the super-Archimedean
property. Recall that ]Rio is the set of intervals of R. o of the form [r, +o00[ and |r, oo, to which the empty interval is added.

The name itself of “interval order” naturally leads to the following question: why limiting oneself to relations that can be
represented by closed intervals, and not consider the relations that can be by intervals which are closed or open. The set

]Rio is a response to this question. Another response is given by the following variant of Lemma 6.5:

Lemma 12.1. Let R € R,(A) ~ JR?’O"(A). There exist two morphisms of N*-sets vy, v, : A — A such that for allx, y € A, we
have

Vi) > 1(0) i (x,y) € A
vi(x) > va(y)  if (x,y) € BR

Moreover, up to multiplication by an element of R.q, the pair (vq, v,) is unique.

ny@{

Proof. By (6.5), there exists a representation (u1, u) of R such that ul(A'f) C A and uy(A) C A. Consider the projection
Rio — A, r — T defined in the proof of (9.3). And for any functionu : A — R%,, note it : A — A the function defined by

>0

i(x) = u(x). Then, the pair (vq, v3) = (U, Uy) satisfies the conditions of the lemma. And the uniqueness property of (v, v;)
results from the uniqueness property of (uq, u;). 0O

In our opinion, the answer (6.5) is preferable to the answer (12.1). Indeed, in (12.1), we must first choose whether a
triplet (x, R, y) is or is not super-Archimedean before being able to decide whether x Ry or x (—R) y with the pair of functions
(v1, v2). On the other hand, in (6.5), the fact that a triplet (x, R, y) is or is not super-Archimedean is deduced a posteriori from
the representation (uq, u;); i.e. the pair of values (u;(x), u2(y)) € Rio X Rio allows not only deciding if xRy or x (—R) y,
but also deciding whether (x, R, y) is super-Archimedean or not.

The study of positive homothetic orders on A which are not generalized homothetic biorders will be the focus of a further
work.
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